A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function

نویسنده

  • P. G. Walsh
چکیده

In this paper we present a refined version of the Newton polygon process to compute the Puiseux expansions of an algebraic function defined over the rational function field. We determine an upper bound for the bitcomplexity of computing the singular part of a Puiseux expansion by this algorithm, and use a recent quantitative version of Eisenstein’s theorem on power series expansions of algebraic functions to show that this computational complexity is polynomial in the degrees and the logarithm of the height of the polynomial defining the algebraic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A POLYNOMIAL TIME BRANCH AND BOUND ALGORITHM FOR THE SINGLE ITEM ECONOMIC LOT SIZING PROBLEM WITH ALL UNITS DISCOUNT AND RESALE

The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the order...

متن کامل

An effective method for approximating the solution of singular integral equations with Cauchy kernel type

In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...

متن کامل

Puiseux Series Solutions of Ordinary Polynomial Differential Equations : Complexity Study

We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given in 1990 by Grigoriev for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The alg...

متن کامل

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

متن کامل

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000